§ 24. химия и производство
Содержание:
- Акции компаний, работающих с водородом
- Урок Практическая работа «Получение водорода и исследование его свойств.»
- ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА
- ФОРМУЛА ИЗОБРЕТЕНИЯ
- ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА
- Преимущества использования
- Видео
- Самостоятельное изготовление электролизера
- Реактор из пластин
- Добыча водорода в условиях домашнего хозяйства
- Методы производства водорода
- Технические особенности оборудования для получения кислорода в промышленности
- Получение водорода в промышленности
- Создание опытного образца
Акции компаний, работающих с водородом
Если водороду суждено занять основное место в энергетической системе будущего, тогда инвесторам стоит обратить внимание на перечисленные ниже компании. Каждая из них либо работает с водородом, либо изготавливает компоненты и оборудование для водородных систем
Ballard Power Systems Inc
Ballard Power Systems Inc (NASDAQ: BLDP) была основана в 1979 году геофизиком Джеффри Баллардом (Geoffrey Ballard). Компания занимается производством топливных элементов и продуктов для них.
В Ballard Power разработали жидкий химический состав, который можно будет заливать в топливный бак автомобиля, а затем в специальном реакторе из данного раствора будет выделяться водород, необходимый для получения электричества. Для хранения данного химического состава подойдут резервуары, используемые на АЗС. Вопрос только в объёмах производства.
График акций Ballard Power Systems Inc (NASDAQ: BLDP)
К сожалению, Ballard Power Systems является убыточной и руководство не даёт прогнозов по выходу на чистую прибыль.
FuelCell Energy, Inc.
Следующей компанией, на которую стоит обратить внимание, является FuelCell Energy (NASDAQ: FCEL). Компания FuelCell Energy занимается производством экологически чистого водорода и топливных элементов
С чистым водородом дела обстоят сложнее, чем с жидкостью от Ballard Power. Водород взрывоопасен и летуч. Его необходимо хранить в сжатом или жидком виде, что требует дополнительного оборудования для его сжижения и хранения. Но, с другой стороны, для хранения водорода на действующих АЗС после их модернизации могут подойти ёмкости, которые сейчас используются для хранения метана и пропана.
FuelCell Energy также является убыточной, и здесь все надежды только на активное развитие отрасли в будущем. Акции компании с корректировались на 40% от максимальных цен, достигнутых в феврале 2021 года. Для долгосрочных инвесторов это может оказаться хорошей возможностью для покупки акций.
График акций FuelCell Energy (NASDAQ: FCEL)
Plug Power Inc.
Ещё одним ярким представителем данного сектора является компания Plug Power (NASDAQ: PLUG), акции которой за 6 месяцев взлетели в цене более чем на 1300%. Компания занимается разработкой систем водородных топливных элементов, которые заменяют обычные аккумуляторы на оборудовании и транспортных средствах, работающих от электричества.
Падение стоимости акций от максимальных значений на 48% привело к негативной реакции участников рынка, и сейчас против компании возбуждаются коллективные иски инвесторов, которые утверждают, что руководство Plug Power ввело их в заблуждение
Если обратить внимание на новостную ленту Yahoo Finance, то там можно увидеть только предупреждение юридических фирм о сроках подачи исков к компании Plug Power
Новостная лента Yahoo Finance
Plug Power, как и компании представленные выше, тоже является убыточной. Данные с сайта macrotrends.net от 2006 года показывают, что лишь в 2014 году компания смогла выйти на чистую прибыль в размере 4 млн USD, всё остальное время компания демонстрировала только убытки.
График акций Plug Power (NASDAQ: PLUG)
Nikola Corporation
Затрагивая тему водорода, невозможно обойти стороной скандально известную компанию Nikola Corporation (NASDAQ: NKLA), которая пытается сделать электрогрузовик, работающий на водороде.
В 2016 году публике был представлен концепт грузовика на водородных топливных элементах, которые вырабатывают электричество, необходимое для его движения. На одной заправке водородом электрогрузовик Nikola One может преодолеть 1 200 миль (1 900 км), что пока недосягаемо для электрогрузовика от Tesla.
График акций Nikola Corporation (NASDAQ: NKLA)
Другие компании
Есть и другие компании, которые взаимодействуют с водородом, и развитие отрасли может позитивно отразиться на их доходах. К таким компаниям относятся:
- Air Products & Chemicals (NYSE: APD)
- Bloom Energy (NYSE: BE)
- Linde PLC (NYSE: LIN)
- DuPont de Nemours Inc (NYSE: DD)
Урок Практическая работа «Получение водорода и исследование его свойств.»
Урок 31 Класс 8 —
Тема:Практическая работа № 4 Получение водорода и исследование его свойств.Дата ____________20
МБОУ «С(К)ОШ №16», учитель химии Березинская А.А.
Цель:
- совершенствовать экспериментальные умения — приемы работы с лабораторным оборудованием и веществами; умения наблюдать, делать выводы, оформлять результаты практической работы в тетрад;
- работа над развитием навыков умелого обращения с огнем, опасными веществами.
- умение составлять уравнения химических реакций, умение делать выводы, соблюдать правила техники безопасности;
- расширение кругозора обучающихся, формирование уважения к истории науки.
- развитие представлений о здоровом образе жизни в блоках: «Химия в быту — безопасное поведение».
Коррекционные цели:
коррекция и развитие связной устной и письменной речи, коррекция и развитие моторной памяти, развитие умений делать выводы.
Оборудование:
- лабораторный штатив с лапкой, держатель для пробирок, штатив для пробирок, ложка-дозатор, фильтровальная бумага
- спиртовка, спички
- автоматический прибор Кирюшкина для получения газов, 3 пробирки, кристаллизатор с водой
Реактивы:
гранулы цинка, соляная кислота (разб.), оксид меди (II).
Тип урока
: урок- практикум (виртуальная лаборатория)
Правила техники безопасности
Работа со спиртовкой; работа со стеклом; Проверка прибора на герметичность.
Ход работы:
I. Подготовка к проведению практической работы.
- Инструктаж по технике безопасности при работе с сухим горючим.
- Технический инструктаж о проведении практической работы.
II. Актуализация знаний
Какие исходные вещества будем использовать мы для получения водорода?
Необходимо ли нагревать реакционную смесь?
На что обратить внимание при записи наблюдений?
Какой прибор будем использовать для получения водорода?
Какими способами можно собрать водород, почему?
Знакомство с инструкцией: учебник стр. ________
III. Проведение практической работы (просмотр видео: Получение водорода.)
III. Закрепление знаний, умений, навыков.
После проведения работы сделать вывод, записать все результаты в тетрадь.
Домашнее задание: § ________.
Практическая работа № 4.Получение водорода и исследование его свойств.
С правилами ТБ ознакомлен (а)
Цель:
научиться получать, собирать водород; изучить физические и химические свойства водорода.
Оборудование:
лабораторный штатив с лапкой, держатель для пробирок, штатив для пробирок, ложка-дозатор, фильтровальная бумага,спиртовка, спички, автоматический прибор Кирюшкина для получения газов, 3 пробирки, кристаллизатор с водой.
Реактивы:
гранулы цинка, соляная кислота (разб.), оксид меди (II).
Ход работы
1. Способ получения водорода – взаимодействие активных металлов с кислотами.
Наблюдения:
- реакция взаимодействия гранул цинка с соляной кислотой идет сначала медленно, затем очень бурно, пробирка разогревается
- из газоотводной трубки выделяется бесцветный газ
- при упаривании полученного раствора на стеклянной пластинке остается белый порошок
2. Приборы для получения и собирания водорода
Рис. Прибор для получения водорода – автоматический, который позволяет в любой момент остановить реакцию с помощью зажима (прибор Кирюшкина).
Собирание газа методом вытеснения воды – возможно, т.к. водород малорастворим в ней.
– следовательно, водород легче воздуха
3. Обнаружение водорода – проверка его на чистоту
Наблюдения:
- при сжигании первой порции газа раздается резкий лающий звук
- при сжигании второй порции газа слышен легкий хлопок Рисунок 5
«п-пах»
4. Свойство водорода – активный восстановитель
Наблюдения:
- порошок меняет цвет с черного на медный
- на стенках пробирки появляются бесцветные капельки жидкости
Вывод:
Одним из способов получения водорода в лаборатории является взаимодействие цинка с разбавленной соляной кислотой, при этом образуется соль (хлорид цинка) и водород. Водород – бесцветный газ, без запаха, малорастворим в воде, легче воздуха, в смеси с воздухом взрывоопасен, восстанавливает металлы из их оксидов.
3
ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА
Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.
Небольшой расход воды при получении электроэнергии и тепла.
Простота способа.
Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.
Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.
Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.
В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.
Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.
Изобретение может найти применение в
промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.
ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ получения водорода и кислорода из пара воды
, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой500 — 550 o C , пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.
Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.
Общая схема электролизера выглядит так.
Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.
Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.
Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.
К электродам прикрепляются провода. Провода должны быть тщательно изолированы.
Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.
Все тщательно промазывается герметиком.
Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.
Их необходимо соединить вместе и оплавить шов.
Гайки делаются из бутылочных крышек.
В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.
В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.
Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.
Под диодный мост необходимо подложить несколько слоев картона.
В крышке распаячной коробки делаются необходимые отверстия.
Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.
Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.
Актуальность этого вопроса на сегодняшний день достаточно высока по причине того, что сфера использования водорода чрезвычайно обширна, а в чистом виде он практически нигде в природе не встречается. Именно поэтому было разработано несколько методик, позволяющих осуществлять добычу этого газа из других соединений посредством химических и физических реакций. Об этом и рассказывается в приведенной статье.
ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА
Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.
Небольшой расход воды при получении электроэнергии и тепла.
Простота способа.
Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.
Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.
Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.
В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.
Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.
Изобретение может найти применение в
промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.
Преимущества использования
Главное достоинство водорода как топлива состоит в его абсолютной безвредности: при сгорании этого вещества образуется чистый водяной пар.
Ни один другой вид топлива не может похвастаться этим качеством.
Даже природный газ при сжигании образует углекислоту, которая, как принято сегодня считать, приводит к возникновению парникового эффекта.
Второе преимущество – доступность. Водород является самым распространенным веществом во Вселенной, а добывать его можно прямо из воды, запасы которой на нашей планете можно считать неисчерпаемыми. Правда, как мы увидим далее, доступность эта пока только кажущаяся.
Видео
Можете посмотреть видео о том, как отапливать дом при помощи водорода. Также там дана информация о преимуществах такого способа отопления частного жилья.
Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.
Водородные генераторы для отопления могут обладать различной мощностью
В нынешнее время отопление водородом своими руками
– вещь весьма распространенная . Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.
Химические свойства Н2
Содержание пошаговой инструкции:
Самостоятельное изготовление электролизера
Сделать электролизер собственными руками может всякий человек. Для сборочного процесса самой обычной конструкции понадобятся нижеследующие материалы:
- лист нержавеющей стали (оптимальные варианты – иностранная AISI 316L или наша 03Х16Н15М3);
- болты М6х150;
- шайбы и гайки;
- прозрачная трубка – можно использовать ватерпас, который применяется в целях строительства;
- несколько штуцеров типа «елочка» с внешним диаметром 8 мм;
- контейнер из пластика объемом 1,5 л;
- маленькой фильтрующий водопроводную воду фильтр, к примеру, фильтр для машин для стирки;
- обратный водный клапан.
Сборочный процесс
Собирать электролизер собственными руками следует по следующей инструкции:
- В первую очередь нужно разметить и последующую распилку листа нержавеющей стали на одинаковые квадраты. Распилка может выполняться угловой шлифмашинкой (угловой шлифмашиной). Один из уголков в подобных квадратах обязан быть спилен под угол для верного закрепления пластин;
- Дальше понадобится сделать отверстие для болта на противоположной от углового спила стороне пластины;
- Соединение пластин следует производить по очереди: одна пластина на «+», следующая на «-» и так дальше;
- Между разно заряженными пластинами должен находиться изолятор, которым выступает трубка от ватерпаса. Ее следует разрезать на кольца, какие следует разрезать вдоль для получения полосок толщиной 1 мм. Подобного расстояния между пластин достаточно для хорошего выделения газа при электролизе;
- Скрепление пластин вместе выполняется при помощи шайб так: на болт садится шайба, потом – пластина, дальше – три шайбы, после – пластина и так дальше. Пластины, благоприятно заряженные, размещаются зеркально отрицательно заряженных листов. Это дает возможность не позволить задевание электродов спиленными краями;
Собранные вместе пластины электролизной установки
- Собирая пластины, следует одновременно выполнять их изоляцию и затяжку гаек;
- Также каждую пластину необходимо прозвонить для того, чтобы быть увереным в отсутствии короткого замыкания;
- Дальше всю сборку требуется уместить в бокс из пластика;
- После чего стоит выделить места касания болтов о стены контейнера, где и высверлить два отверстия. Если болты не влезают в емкость, тогда их нужно подрезать ножовкой;
- Дальше болты затягиваются гайками и шайбами для герметичности конструкции;
Пластины, помещенные в контейнер из пластика
- После проделанных действий понадобится выполнить отверстия в крышке контейнера и вставить в них штуцера. Непроницаемость в этом случае можно обеспечить при помощи промазки швов герметиками на силиконовой основе;
- Защитный клапан и фильтр в конструкции размещаются на выходе газа и служат средством контроля чрезмерного его накопления, способное привести к плохим результатам;
- Электролизная установка собрана.
Последний этап – испытание, которое выполняется подобным образом:
- заполнение водой емкости до отметки болтов для крепежа;
- подключение питания к прибору;
- подключение к штуцеру трубки, противоположный конец которой опускается в воду.
Если будет подан на установку слабый ток, то выпускание газа через трубку будет практически неприметно, однако изнутри электролизера его можно будет смотреть. Повышая переменный ток, добавляя щелочной катализатор в воду, можно значительно расширить выход газового вещества.
Сделанный электролизер как правило выступает важной частью многих устройств, к примеру, водородной горелки
внешний вид водородной горелки, основой которой считается собственноручно сделанный электролизер
Зная типы, ключевые характеристики, устройство и рабочий принцип ионных установок, можно выполнить правильную сборку самодельной конструкции, которые является прекрасным помощником в самых разных бытовых ситуациях: от сварки и экономии топливного расхода автомобильного транспорта до функционирования систем отопления.
Реактор из пластин
Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.
Кроме листовой нержавейки марки 316 понадобится купить:
- резина толщиной 4 мм, стойкая к воздействию щелочи;
- концевые пластины из оргстекла либо текстолита;
- шпильки стяжные М10—14;
- обратный клапан для газосварочного аппарата;
- фильтр водяной под гидрозатвор;
- трубы соединительные из гофрированной нержавейки;
- гидроокись калия в виде порошка.
Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.
Схема генератора мокрого типа Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:
- На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
- В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
- Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».
Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:
Добыча водорода в условиях домашнего хозяйства
Выбор электролизера
Для получения элемента дома необходим специальный аппарат – электролизер. Вариантов такого оборудования на рынке много, аппараты предлагают как известные технологические корпорации, так и мелкие производители. Брендовые агрегаты дороже, но качество их сборки выше.
Домашний прибор отличается малыми габаритами и легкостью в эксплуатации. Основными деталями его являются:
Электролизер — что это
- риформер;
- система очистки;
- топливные элементы;
- компрессорное оборудование;
- емкость для хранения водорода.
В качестве сырья берется простая вода из-под крана, а электричество идет из обычной розетки. Сэкономить на электроэнергии позволяют агрегаты на солнечных батареях.
«Домашний» водород применяют в системах отопления или приготовления пищи. А также им обогащают бензовоздушную смесь, чтобы повысить мощность двигателей автомобиля.
Изготовление аппарата своими руками
Еще дешевле сделать прибор самому в домашних условиях. Сухой электролизер выглядит как герметичный контейнер, который представляет собой две электродные пластины в емкости с электролитическим раствором. Во Всемирной сети предлагаются разнообразные схемы сборки аппаратов разных моделей:
- с двумя фильтрами;
- с верхним либо нижним расположением контейнера;
- с двумя или тремя клапанами;
- с оцинкованной платой;
- на электродах.
Схема устройства электролиза
Простой прибор для получения водорода создать несложно. Для него потребуются:
- листовая нержавеющая сталь;
- прозрачная трубка;
- штуцеры;
- пластиковая емкость (1,5 л);
- водяной фильтр и обратный клапан.
Устройство простого прибора для получения водорода
Помимо этого, нужны будут различные метизы: гайки, шайбы, болты. Первым делом нужно распилить лист на 16 квадратных отсеков, у каждого из них спилить угол. В противоположном от него углу требуется высверлить отверстие для болтового крепления пластин. Для обеспечения постоянного тока пластины нужно подключать по схеме: плюс–минус–плюс–минус. Изолируют эти детали друг от друга с помощью трубки, а на соединении болтом и шайбами (по три штуки между пластинками). На плюс и минус насаживают по 8 пластин.
При правильной сборке ребра пластинок не будут задевать электроды. Собранные детали опускают в емкость из пластика. В месте касания стенок болтами делают два установочных отверстия. Устанавливают защитный клапан для удаления избытка газа. В крышку контейнера монтируют штуцеры и герметизируют швы силиконом.
Тестирование аппарата
Чтобы протестировать аппарат, выполняют несколько действий:
Схема получения водорода
- Наполняют жидкостью.
- Прикрыв крышкой, соединяют один конец трубки со штуцером.
- Второй опускают в воду.
- Подключают к источнику питания.
После включения прибора в розетку через несколько секунд будет заметен процесс электролиза и выпадение осадка.
Чистая вода не обладает хорошей электропроводностью. Для улучшения этого показателя нужно создать электролитический раствор, добавив щелочь – гидроксид натрия. Он есть в составах для очищения труб наподобие «Крота».
Методы производства водорода
В настоящее время существует множество методов промышленного производства водорода:
разрабатывались технологии производства водорода из мусора, этанола, металлургического шлака, биомассы и другие технологии.
К подобным способам относятся[источник не указан 2103 дня]:
- паровая конверсия метана и природного газа;
- газификация угля;
- электролиз воды;
- пиролиз;
- частичное окисление;
- биотехнологии.
Также в редких случаях используется реакция алюминия и щелочного раствора.
Разнообразие способов получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.
На настоящий момент наиболее экономически выгодным считается производство водорода из ископаемого сырья и в данный момент наиболее доступным и дешёвым процессом является паровая конверсия (согласно прогнозам, она будет использоваться в начальной стадии перехода к водородной экономике для упрощения преодоления проблемы «курицы и яйца», когда из-за отсутствия инфраструктуры нет спроса на водородные автомобили, а из-за отсутствия водородных автомобилей не строится инфраструктура. В долгосрочной перспективе, однако, необходим переход на возобновляемые источники энергии, так как одной из главных целей внедрения водородной энергетики является снижения выброса парниковых газов; такими источниками может быть энергия ветра или солнечная энергия, позволяющая проводить электролиз воды).
Снизить уровень выбросов углерода в производственных отраслях можно за счет водорода, полученного с использованием низкоуглеродных технологий, для этого можно применять технологии улавливания и хранения углекислого газа, а также электролиза воды, «в первую очередь с помощью энергии объектов атомной, гидро-, ветряной и солнечной энергетики».
Цветовая градация водорода зависит от способа его выработки и углеродного следа, то есть количества вредных выбросов:
- «зеленый» — произведён с помощью энергии из возобновляемых источников методом электролиза воды, считается самым чистым;
- «голубой» — произведенный из природного газа; в этом случае углекислый газ накапливается в специальных хранилищах;
- «желтый» — произведенный при помощи атомной энергии.
- при производстве «серого» водорода вредные выбросы идут в атмосферу.
Себестоимость «зеленого» водорода около 10 долларов за кг (что «абсолютно нерентабельно», по мнению главы Фонда национальной энергетической безопасности); «голубой» и «желтый» водород в несколько раз дешевле «зеленого» — от 2 долларов за килограмм.
Производство водорода может быть сосредоточено на централизованных крупных предприятиях, что понижает себестоимость производства, но требует дополнительных расходов на доставку водорода к водородным автозаправочным станциям. Другим вариантом является маломасштабное производство непосредственно на специально оборудованных водородных автозаправочных станциях.
В декабре[когда?] 2013(?) германский институт Deutsches Zentrum für Luft- und Raumfahrt (DLR) завершил строительство пилотной установки по производству водорода из воды в солнечных концентраторах. Мощность установки 100 кВт.
В 2019 г. в Германии началось строительство крупнейшей в мире установки по производству 1300 тонн водорода ежегодно методом электролиза.
Технические особенности оборудования для получения кислорода в промышленности
Наладить процесс получения кислорода в газообразном состоянии помогают генераторы промышленного типа «ОКСИМАТ». Их технические характеристики и конструктивные особенности направлены на получение данного вещества в промышленности необходимой чистоты и требуемом количестве на протяжении суток (без перерыва). Следует учесть, что работать оборудование может в любом режиме как с остановками, так и без них. Агрегат функционирует под давлением. На входе должен быть осушенный воздух в сжатом состоянии очищенный от влаги. Предусматриваются модели малой, средней и большой производительности.
Получение водорода в промышленности
В промышленности водород получают главным образом из природных и попутных газов, коксового газа и продуктов газификации топлива (водяного и паровоздушного газов), путем неполного окисления углеводородов.
Основным источником водорода в промышленности является конверсия (от лат. «превращение») углеводородов, главным образом природного газа, парами воды (пароводяная конверсия):
CH4 + H2O → CO + 3H2, 800-900 °C, ΔH298 = 206,2 кДж/моль
С последующим каталитическим взаимодействием оксида углерода (II) с парами воды:
CO + H2O → CO2 + H2, 550-600 °C, ΔH298 = -41,2 кДж/моль
Катализатором этой реакции служит Fe2O3 с активирующими добавками (Cr2O3, Al2O3, K2O и др.).
Эндотермичность процесса конверсии метана можно частично восполнить энергией, выделяющейся при неполном его окислении.
2CH4 + O2 → 2CO + 4H2, ΔH298 = -71 кДж/моль
Этот процесс называется кислородной конверсией метана. Поэтому в промышленности часто комбинируют все эти три процесса в один. Для этого природный газ смешивается с водяным паром и кислородом:
3CH4 + O2 + H2O → 3CO + 7H2, 850-900 °C, Ni
или
2CH4 + O2 + 2H2O → 2CO2 + 6H2, 850-900 °C, Ni
Диоксид углерода удаляют промывкой газовой смеси водой под давлением и окончательно – поглощением растворами щелочей.
Все описанные выше процессы используются как по отдельности, так и в сочетании друг с другом.
Помимо природного газа для получения водорода путем конверсии используют генераторный (CO + N2), водяной (CO + H2) – пароводяная конверсия, попутные газы – пароводяная и (или) кислородная конверсия.
В связи с уменьшением запасов углеводородного сырья большой интерес приобретает метод получения водорода восстановлением водяного пара раскаленным углем:
C + H2O → CO + H2, 1000 °C, ΔH298 = 131 кДж/моль
При этом образуется генераторный газ. Затраты энергии на его получение можно компенсировать за счет реакции неполного окисления угля:
C + 1/2O2 → CO, ΔH298 = -110,5 кДж/моль
При комбинировании этих процессов получается водяной газ, состоящий в основном из смеси водорода и угарного газа:
3C + H2O + O2 → 3CO + H2
Важным следствием является то, что получаемые генераторный и водяной газы можно использовать для дальнейшего получения водорода методом пароводяной конверсии.
Из газовых смесей с большим содержанием водорода (коксовый газ, газы нефтепереработки) его получают путем глубокого охлаждения смеси, при котором практически все газы кроме водорода сжижаются.
Водород высокой чистоты получают электролизом водных растворов щелочей (NaOH или KOH). Раньше для этого использовалась серная кислота. Однако это нерационально из-за быстрого коррозионного разрушения стальной аппаратуры. Хотя образующаяся в процессе электролиза пероксодисерная кислота H2S2O8 может использоваться для получения пергидроля:
2SO42- — 2ê = S2O82-
H2S2O8 + H2O = H2SO5 + H2SO4
H2SO5 + H2O = H2SO4 + H2O2
В случае щелочей концентрация этих растворов выбирается такой, которая отвечает их максимальной электрической проводимости (25% для NaOH и 34% для KOH). Электроды обычно изготавливают из листового никеля. Этот металл не подвергается коррозии в растворах щелочей, даже будучи анодом. В случае надобности получающийся водород очищают от паров воды и следов кислорода. Этим способом целесообразно получать водород в районах с дешевой электроэнергией.
Водород образуется также как побочный продукт в процессе получения хлора и щелочей электролизом водных растворов хлоридов щелочных металлов.
Потенциальные способы получения водорода в промышленности
1. Термолиз воды:
2H2O → 2H2 + O2, 2000 °C, электрическая дуга.
Недостаток – большие расходы энергии.
2. Фотолиз воды:
2H2O → 2H2 + O2, hμ
3. Биохимическое разложение воды под действием бактерий.
4. Химическое разложение воды, восстановление водорода:
H2O + X = H2 + XO
2XO → 2X + O2, t°
Создание опытного образца
Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.
Из чего состоит примитивный электролизер:
- реактор – стеклянная либо пластиковая емкость с толстыми стенками;
- металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
- второй резервуар играет роль водяного затвора;
- трубки для отвода газа HHO.
Принцип работы электролизера следующий:
- К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
- В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
- Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
- Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.
Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.
Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:
- Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
- Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
- Поместите электроды в бутылку и завинтите крышку.
- Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.
Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.